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Spin-wave theory of impurity states in a Heisenberg 
ferromagnet with planar anisotropy 
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Laboratory for Theoretical Physics 020, Institute of Nuclear Sciences ‘Boris Kidri?- 
VinEa, 1001 Belgrade, PO Box 522, Yugoslavia 

Received 2 October 1989, in final form 19 February 1990 

Abstract. The linear spin-wave theory of a single magnetic impurity in a Heisenberg ferro- 
magnet with planar single-ion anisotropy is presented. The impurity-host exchange is 
assumed to be ferromagnetic or antiferromagnetic and the ground state of the host taken to 
be the classical aligned state. The calculation consists of deriving the double-time thermo- 
dynamic Green function from the corresponding equation of motion. From the poles of the 
Green functions the criteria for the impurity modes are obtained and calculations of their 
energies as functions of various perturbation parameters and for various values of the 
anisotropy given. 

1. Introduction 

There has been much interest in the effect of impurities on the continuous energy spec- 
trum of the elementary excitations in solids. The perturbation produced by the impurity 
is characterised by its spatial extent, and for sufficiently small perturbations the energy 
levels of the impurity-host system may be solved exactly. The impurity and perturbed 
region of the host form a complex with discrete energy levels that may lie within or 
outside the energy band of the host, virtual and localised states, respectively. The virtual 
levels decay into the band with a finite lifetime and may have a significant effect on the 
thermodynamic properties of the system. Localised levels have a long lifetime and in 
general are of less importance to the thermodynamic properties but may have an impor- 
tant role in magneto-optical transitions. 

The literature on the effects of impurities in simple metals, crystals and ferromagnets 
is very extensive. There have been several reviews and we refer the reader to those by 
Izyumov (1965) and Maradudin (1966). 

The energy states in an isotropic Heisenberg ferromagnet containing a ferro- 
magnetically coupled impurity have been examined by Wolfram and Callaway (1963), 
Takeno (1963) and Izyumov and Medvedev (1965). They find that the energy levels may 
be classified according to the symmetry elements of the crystal lattice. The corresponding 
problem for an antiferromagnetically coupled impurity has been discussed by Ishii et a1 
(1965) and Parkinson (1967). In addition to the energy modes found with the ferro- 
magnetically coupled impurity there always exists a localised mode below the energy 
band of the host. This mode may be understood as one in which the impurity precesses 
in a natural sense and the host spins driven through the exchange coupling precesses in 
the same sense. 
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The problem of the inelastic one-magnon-neutron cross section in the isotropic 
Heisenberg ferromagnet with a ferromagnetically or antiferromagnetically coupled 
impurity has been considered by Izyumov and Medvedev (1965) and Lovesey (1967). 

Lovesey (1968a, b) considered the linear spin-wave theory of a single magnetic 
impurity in a body-centred Heisenberg antiferromagnet and calculated the inelastic 
neutron cross section in the case of positive and negative impurity-host exchange 
coupling. 

Parkinson (1969a, b) has applied the theory of defects in antiferromagneticinsulators 
to discuss optical properties of perovskite and layer antiferromagnets with K2NiF4 
structure. 

On the other hand, ferromagnetic systems with planar anisotropy have received 
much theoretical and experimental attention too. As in antiferromagnets the ground 
state of the Heisenberg ferromagnet with planar (or general non-axial) single-ion ani- 
sotropy is unknown and obtaining a systematic treatment of the anisotropy is difficult. 
In a series of papers (see Lindgard and Kowalska (1976), Rastelli and Lindgard (1979) 
and Rastelli and Tassi (1984) and references therein), Lindgard and coworkers have 
analysed the pure Heisenberg ferromagnet with planar anisotropy and derived low tem- 
perature spin-wave renormalisation for that system by means of a perturbation expan- 
sion in n,/S, d/S and n,d/S (where n4 is the spin-wave population factor, S is the spin of 
the system and d is the renormalised anisotropy). 

We consider in this paper the spin-wave theory of the Heisenberg ferromagnet with 
planar anisotropy containing a single magnetic impurity ferromagnetically or anti- 
ferromagnetically coupled to the host. 

The model Hamiltonian may be written 

(1.1) 
where '%o is the Hamiltonian of the pure host and accounts for a single impurity ion 
of spin S' coupled to the host by an exchange integral of magnitudeJ'. With only nearest- 
neighbour coupling (J > O), X o  is 

D > 0 is the single-ion planar anisotropy strength and S ,  is the spin operator pf the site 
n .  6 is the vector connecting nearest neighbours. The impurity Hamiltonian XI is given 
by 

= 2 J  2 S ,  - S o  3 W' 2 S, * S o  - D(Sg)2 + D'(SC)2 (1.3) 
n(0) 4 0 )  

where 0 denotes the impurity site and the anisotropy strength D'  is in general different 
from D. In the case of large spin S and low temperatures, Rastelli and Lindgard (1979) 
proved that the linear spin-wave theory is a good working approximation. It is introduced 
through the following transformation. For the host, 

s, =ma; s; =man snz = s - a;sn. ( 1 . 4 ~ )  

s, =ma: s'; = mao shZ = S' - 6; l io .  (1.4b) 
For a ferromagnetic impurity, 

For antiferromagnetic impurity, 
s;- = mao S&+ =mi,+ $hZ = -S' + d i 6 0 .  (1 .4~)  

$t reduced to terms quadratic in the spin deviation operators d,  and d i t  6, and 6,' satisfy 
Bose commutation rules. 
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In section 2 ,  we give the formalism of Green functions applied to our system and 
derive their equations of motion. In section 3 ,  numerical calculations of the energies of 
the various ferromagnetic impurity modes are presented and their dependence on the 
anisotropy of the host analysed. In section 4, the case of the antiferromagnetic impurity 
is presented. The conclusions are given in section 5 .  

2. The Green functions and their equations of motion 

The Green function that we use is the thermodynamic two-time retarded Green function 
for Bose operators 6,: 

Gmn(t) = -iflt)([dm(t), d:(O)l-) E ( ( 6 m ( t ) ;  6,i(0)))  (2.1) 

E ( ( i m ; i i ) ) E  = a m ,  + ( ( [ f i m , & I - ; 6 i j ) E *  (2.2) 

which satisfies the following equation of motion: 

f l t)  is the unit step function, 6,, is the Kronecker symbol, [ci,, 4- is the commutator 
of 6, and 6,, and ( . . . ) represents the average over the grand canonical ensemble at a 
temperature p = I / ~ , T .  

The necessary theory of the Green functions is given in the review by Zubarev (1960). 
In order to obtain an explicit expression for the Green functions it is necessary to 

approximate the higher-order Green functions that occur in the equation of motion. This 
decoupling is for the low temperatures into the approximate ground state (linear in 
D / J )  in which all the spins are aligned, and is automatically obtained when the linearised 
Holstein-Primakoff (HP) transformation in the Hamiltonian was used. 

On the right-hand side of equation (2.2) another Green function is generated 

Kmn ( E )  = ((6; ; 6: ) )E .  

E( (6 i ;c i i ) )E  = ( ( [ a i ,  %]-;6,i)),. 

(2.3) 

(2  4)  

The equation of motion for K,, is 

If we calculate explicitly the commutators in (2.2) and (2.4) and introduce some 
appropriate abbreviations we obtain the following system of equations: 

( E  - A)G,, - DSK,, + 2JS 

( E  + A)Km,z + DSG,, - 2JS 

Gin = a,, + A,, 

Kin = -e,, 
i h )  

i(m) 

with 
A = 2ZJS + DS 

where Z is the number of nearest neighbours. In the following we consider the case of 
simple cubic lattice where Z = 6:  
.4,,, = ( 1 2 J S ~ 6 0 ,  + 2JSpA0, + DS860m)G,, 

+ DS860mK,, - 2JSyAo,Go, - 2JSy60, 2 Gin (2.7a) 
i (m)  

e,, = ( 1 2 J S ~ 6 , ,  + 2JSpA0,  + DS86,)Km, 

+ DS860,Gm, - 2JSyAo,Ko, - 2JSy60, Kin (2.7b) 

where A,, is equal to unity if indices n, m connect nearest neighbours and otherwise is 
i(m) 
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zero. The perturbation parameters are 
E = J ' / J -  1 p = J Y / J S  - 1 

8 = D r S r / D S  - 1 y = Jr /JVm - 1 
Symbolically we can write the system (2.5) as 

= G O  + KO6 + GOA K = K O  + G O ( - E ) 6  + KOA (2.9) 
with 

Go and KO are the pure system Green functions: 
A = VIG + V,R 6 = VIK + V2G (2.10) 

E + 12JS + DS - 2Jsyk 
exp[ik (m - n ) ]  (2. l l a )  

k E2 - E2(k)  
-DS 

exp[ik - (m - n ) ] .  
k E2  - E 2 ( k )  (2. l l b )  

N is the number of atoms in the lattice and k is the wavevector of the first Brillouin zone. 
VI and V ,  are the impurity perturbation matrices: 

(2.12a) 
(2.12b) 

(2.12c) 
(2.12d) 

E(k)  is the dispersion relation for linear spin waves in the pure host: 
E 2 ( k )  = 4JS(6 - yk)[Js(6  - Y k )  + D S ]  (2.13) 

with yk = & exp(ik - S), obtained from the system (2.5) by excluding the impurity site 
Green function matrix elements. 

Equation (2.13) differs from the corresponding equation (17) of Rastelli and 
Lindgard (1979) by the factor 1 - 1/2S multiplying DS in (2.13). They obtained that 
factor by renormalising spin waves beyond the linear HP transformation. If we restrict 
our attention to large spins (S > l ) ,  our equation (2.13) is a good approximation of the 
result of Rastelli and Lindgard. 

Having this in mind, we can solve the impurity-host system (2.5) for the Green 
functions G and K: 
$(E$ = G O +  KOV1[1 - G0(-E)V1 - K O V 2 ] - ' K 0  

+ GOV,[l - GO(-E)V,  - K 0 V 2 ] - 1 K O  
(2.14) 

+ G O ( - E ) V , ( l -  G O V 1  - KOV,)-lGo 
with 
$ ( E )  = 1 - K o V ,  - G O V ,  - ( K O V ,  + G O V , )  

x [ l -  GO<-E)V,  - KOV2]-1[GO(-E)V* + K 0 V I ] .  (2.15) 
$ ( -E)  is obtained from (2.15) by permuting energy signs in Go(E+ -E) .  
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Since we are interested in the positions of impurity levels only, we shall concentrate 

ReD(E)  = Re[detI$(E)I] = 0 (2.16) 
which determines the poles of G, corresponding to impurity levels in the system. Re  D ( E )  
is the real part of the complex function D(E) .  

In the limit of zero anisotropy ( D  + 0), the energy spectrum E(k)  and Green function 
G ' ( E )  reduce to the well known expressions for the isotropic Heisenberg system, and 
Ko(E) vanishes. Equation (2.16) reduces to Izyumov's (1965) and Lovesey's (1967) 
results for the magnetic impurity in the isotropic Heisevberg ferromagnet, which can be 
seen by writing down the impurity matrices V I  and V, for the simple-cubic nearest- 
neighbour case explicitly. 

Equation (2.16) is in the nearest-neighbour case of the order Z + 1 and can be 
factorised by transforming to the representation determined by the basis functions for 
the irreducible representations of the cubic point group. Thus (2.16) is split into three 
equations of the lower order: 

Re  D,(E) = 0 Re Dd(E) = 0 Re D,(E)  = 0 (2.17) 
with 
D p ( E )  = 1 - 2JSp[GO,(E) - G?,(E)] 

our attention on the condition 

4J2S2p2[K&(E) - K&(E)I2  
(1 - 2JSp[GO,(-E) - G&(-E)]}  

- (2.18) 

Dd(E) = 1 - 2JSp[GO,(E) + Gy2(E) - 2Gf,(E)] 
4J2S2p2[K&(E) + Ky2(E) - 2K&(E)I2 

- (2.19) 

The expressions for D,(E) are too complicated to be explicitly written here. Owing to 
the symmetry properties in the final expression, only a few Green functions appear: 
G &, and K & , G y 2  and K y2 , and G y3  and K y 3 .  G y 2  and K y 2  connect any pair of atoms 
placed symmetrically around the impurity; Gy3 and KT3 connect any pair of nearest 
atoms in the first coordination sphere. 

Solving (2.17), we obtain local spin states of the s, p and d type. p states are doubly 
degenerate, and d states triply degenerate. We note that they depend only on the single 
perturbation parameter p. In the limit of zero anisotropy, (2.18) and (2.19) reduce to 
Izyumov's results. 

(1 - 2JSp[GO,(-E) + G&(-E) - 2G$(-E)]}'  

3. Numerical results: ferromagnetic impurity 

Equations (2.17) are solved numerically. Green functions are obtained using the Simp- 
son integration rule and the summation was done over 42 000 points in the reduced 
Brillouin zone in order to obtain the following sums: 

s 2 = - 2  1 Y k  

N k E 2  - E 2 ( k )  S d  
=-2 1 

N k  

Y k Y 2 k  

E2  - E 2 ( k )  ' 
The small imaginary part of the complex energy was -0.02. 

In the isotropic case, integrals over the Brillouin zone may be reduced to the complete 
elliptic integrals of the first kind, which saves computing time and increases the accuracy. 
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w 
0 0 

Figure 1. The influence of the anisotropy on the 
0 1 2 3 4 5 ~ o s i n  the pure host: 0, D / J = O ;  0, D / J =  0.5; 

0,  D/J = 1.0; A, D/J = 1.5; A, D/.i = 2.0; +, 
E / L J S  DIJ = 5.0. 

Energies of s, p and d modes are obtained as functions of the perturbation parameters 
S' /S ,  J ' / J  and D/J. In order to reduce the number of independent parameters and to 
save the computing time, we have set D' /D = 1 for most values of S ' /S .  A representative 
value of S ' / S  was chosen to examine the influence of different anisotropy constant D ' .  

We show the influence of the anisotropy on the density of states (DOS) in the pure 
system in figure 1. As the anisotropy increases the DOS near the top of the band is shifted 
towards higher energies, while the shape near the bottom of the band is deformed. The 
Goldstone symmetry is preserved. 

In figure 2 the energies of the p and d modes are given as a function of the perturbation 
parameter J ' S  ' / JS  for different values of the anisotropy constant D/J .  In the limit D + 0 
we reproduce Izyumov's result. As the anisotropy increases, p and d states are shifted 
toward higher energies. 

In figure 3 the energies of the virtual s modes that occur at the bottom of the band are 
shown as a function ofJ'/J, for different values of S ' / S .  As the parameter S'/S increases, 
the influence of the anisotropy becomes more pronounced. If S'/S > 1, resonant levels 
are moved deeper in the band with increase in the anisotropy and the interval J'/J in 
which they exist is reduced. However, for S ' / S  < 1, resonant levels are slightly shifted 
towards the bottom of the band with increase in the anisotropy, and this occurs only for 
larger values of the parameter J'/J. 

In figure 3(c) the impurity anisotropy constant D '  is varied and the results compared 
with the appropriate curve for D '  = D and D/J = 0.5, for three different values of D '  # 
D. The influence of different impurity anisotropy constant D '  # D on the resonant 
states near the bottom of the band is very pronounced. If D ' /D < 1 the change D '  # D 
introduces a decrease in the energies of virtual states for the givenJ'/Jand DIJcompared 
with the case when D' = D.  That decrease is more pronounced if D ' /D is smaller. 

In figure 4 the influence of the anisotropy on the energies of localised and resonant 
s modes near the top of the band is shown. Again, the influence of the anisotropy becomes 
more pronounced with increase in the parameter S'/S. For S ' / S  > 1 the influence of the 
anisotropy is almost independent of S ' / S .  There are no resonant modes near the top of 
the band for S ' / S  > 1. 

The impurity anisotropy constant D' is varied for parameter S'/S = 2 and D/J = 0.5, 
and the results compared with the appropriate curve where D '  = D ,  for three different 
values of D '  # D.  The influence of different impurity anisofropy constants D '  # D on 
the localised states near the top of the band is not as pronounced as in the case of resonant 
states near the bottom of the band. 

4. Numerical results: antiferromagnetic impurity 

As we have already mentioned, the solutions for s,  p and d states are obtained numeri- 
cally. In the case of the antiferromagnetic impurity the p- and d-type modes remain the 
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Figure 2. The influence of the anisotropy on (a) 
the p and (b )  d states: 0, D/J = 0;  0, D/J = 0.5; 
0 ,  D / J =  1.0; A, D / J =  1.5; the broken hori- 
zontal lines represent the top of the band for the 
above values of D/J parameter. 

0 

J ' / J  

Figure 3. For a ferromagnetic impurity; the influ- 
ence of the anisotropy on the virtual s states near 
the bottom of the band for (a )  S ' /S  = 0.25; ( b )  S'/ 
S = 2 and (c) S/S' = 10.0 and for different values 
of D ' / D :  +, D/J = 0 ,  D ' / D  = 1.0; -0-, 
D / J  = 0.5, D ' / D  = 1.0; --U-, D/J = 1.0, D'/ 
D = 1.0; -A-, D/J = 1 .5 ,  D ' l D  = 1.0; curve 
A,--- ,  D/J = 0.5, D ' / D  = 0;  curve B, ---, D /  
J = 0.5, D ' / D  = 0.5; curve C ,  ---, DIJ = 0.5, 
D ' / D  = 1.5. 
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

J ‘ / J  

Figure4. For a ferromagnetic impurity, the influence of the anisotropyon the top of the band 
for (a )  S ‘ /S  = 0.25, ( b )  S‘/S = 2.0 and (c) S‘/S = 10.0: the symbols are as in figure 3. 

same (because the state vector describing the p- and d-type impurity states have zero 
amplitude at the impurity site), but the s-type mode changes. 

In this case there are antiresonant states which are located around the middle of the 
band, with a large negative width. They are more difficult to position but nevertheless 
the influence of the anisotropy is not significant and therefore they are not represented 
by the figure. 

In the case of the antiferromagnetic impurity there are no resonant states near the 
bottom of the band, but there exist solutions for negative energies. As discussed by 
Izyumov and Medvedev (1973) these solution are related to the inhomogeneity of the 
ground state around the impurity. 

In figure 5 we show the influence of the anisotropy on negative solutions for different 
values of S’/S. For S ’ / S  < 1 the anisotropy has almost no influence on the inhomogeneity 
of the ground state. For S’/S 3 1 the range of that inhomogeneity is reduced with increase 
in the anisotropy. This influence is more pronounced for larger values of S’/S. 

The influence of D’ # D is demonstrated in figure 5(c) for D/J = 0.5 and S’ /S  = 10.5. 
If D’/D < 1 the range of the inhomogeneity of the ground state is extended compared 
with the case D’ = D ,  in accordance with the decrease in D’/D.  

In figure 6 we show the influence of the anisotropy on the virtual and localised states 
near the top of the band for two different values of S‘/S. Localised s states are shifted 
towards higher energies as the anisotropy increases. This shift is more pronounced for 
large values of J’/J. 

The resonant s states near the top of the band are only slightly shifted towards higher 
energies with increase in the anisotropy, but the introduction of the anisotropy enlarges 
the range of J’/J in which both resonant and localised states near the top of the band 
exist. 

The influence of the impurity anisotropy constant D‘ # D on the localised and res- 
onant states near the top of the band is shown in figure 6(c) for S’/S = 8 and two values 
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1 

0 0.2 0.4 0.6 0.8 1.0 1.2 

J ' / J  

Figure 5. For an antiferromagnetic impurity, the 
influence of the anisotropy on the negative s 
solutions for (a )  S'/S = 0.1, (b)  S'/S = 1.0 and (c) 
S'/S = 10.5 and for different values of D ' / D :  the 
symbols and curves are as in figure 3; curve A: 
D/J = 0.5, D ' / D  = 0;  curve B: D/J = 0.5, 
D'lD = 0.5; curve C: D/J = 0.5, D ' / D  = 1.5; 
curve D: D/J = 0.5, D ' / D  = 2.0. 

0 0.2 0.4 0.6 0.8 1.0 1.2 

0 0.2 0.4 0.6 0.8 1.0 1.2 

9 3  ( c l  

0 0.2 0.4 0.6 0.8 1.0 1.2 

J ' / J  

Figure 6. For an antiferromagnetic impurity, the 
influence of the anisotropy on the virtual and 
localised s states near the top of the band for (a) 
S'/S = 6.0 and ( b ) ,  (c) S' /S = 8.0. The symbols 
and curves are as in figure 3. Virtual and localised 
curves: B: D ' / D  = 0.5, D/J = 0.5; B': D ' / D  = 
0.5, D/J = 1.5; C:  D ' / D  = 1.5, D/J = 0.5; C': 
D ' / D  = 1.5, D/J = 1.5. The broken horizontal 
lines are as in figure 2 .  
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of D/J. As before, if D’/D < 1, the change D’  # D introduces a decrease in the energies 
of localised states near the top of the band while, if D‘/D > 1, the change introduces an 
increase in energies with respect to the case D’ = D. For the resonant states near the top 
of the band, the opposite happens. If D/J is larger, this influence is more pronounced. 

One can conclude that the impurity anisotropy constant D’ # D significantly changes 
the total influence of anisotropy on the impurity states, i.e. the range of J’ /J  and energy 
range change with the introduction of a new parameter D‘ # D .  

5. Conclusions 

We have calculated the impurity energy states for a Heisenberg ferromagnet with planar 
anisotropy containing a single magnetic impurity ferromagnetically or anti- 
ferromagnetically coupled to the host, using the linear spin-wave approximation. p, d 
and most s modes are shifted towards higher energies as the anisotropy increases. In 
some cases, the interval ofJ’/Jin which localised or resonant states exist is reduced when 
the anisotropy is included. 

The antiresonant states are not much influenced by the anisotropy. 
In the case of an antiferromagnetic impurity the negative solution near the bottom 

of the band is also influenced by the anisotropy in the case S‘/S 2 1. It is related to the 
inhomogeneity of the ground state around the impurity and the anisotropy reduces the 
range of that inhomogeneity. 

The introduction of a different impurity anisotropy constant D’ # D shows the inter- 
dependence of two parameters D/Jand D’lJgenerally increases the total influence of the 
anisotropy if D’/D > 1. If D’/D < 1 the total influence of the anisotropy is diminished. 

All the experimental examples of systems with competing interactions known to us 
have more complex symmetry than simple cubic. Nevertheless, the above conclusions 
about the influence of the anisotropy on the localised and resonant states (in particular 
that the range of J’ /J  changes in which localised and resonant states exist and that this 
change in energy position for fixed S’/S and J’/J is introduced by the anisotropy) should 
hold for more realistic systems too. The work on an experimental example is in progress. 
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